
This is a reproduction of a library book that was digitized
by Google as part of an ongoing effort to preserve the
information in books and make it universally accessible.

https://books.google.com

http://google.com.br/books?id=cJEjDAAAQBAJ&hl=pt-BR

The Building for

B|OnS PlayOOOk

-
A Companion to The Secrets to App Success on Google Play

Edition 1.0

Copyright © 2016 Google Inc. All rights reserved.

Today, hundreds of millions of users are coming online for the

first time and, for the majority, their first online experience will

be on a smartphone. This represents a huge opportunity to

grow your Android app or game business.

Most of these users are in emerging markets. Many will be

using low cost or second hand phones and their data access

may be limited by network coverage or cost. There will also be

a wide range of cultural, language, and educational

backgrounds you’ll need to consider.

Helping you understand what needs to be done to grasp this

opportunity is the subject of this guide. It takes you through

the design, development, go to market, and in market

activities you should consider to best meet the needs of

millions of users.

SECTION 1

Develop your app to account for varying

devices and data uses

Second hand or low-cost smartphones with smaller, lower

resolution screens and less memory will be common among the

next billion users. These users may need to go longer between

battery charges and their data connections could be limited.

SECTION 2

Plan ahead for local users and languages

The needs and aspirations of the next billion users will

encompass unique and novel requirements. An understanding of

local challenges and opportunities is essential to deliver an app

that fulfils user expectations.

SECTION 3

Grow and engage audiences in new markets

Find out how to attract users from the next billion with a

compelling Play store listing by listening to feedback and

employing the right tools for engagement, promotion,

monetization, and analytics.

SECTION 4

Useful resources

Keep up to date with our developer resources, join our

communities, and get support from the Help Center.

Section

Develop you app

O account for

varying devices

and cºlº Uces

Many of the next billion users will be using second hand or

low-cost smartphones. These devices are likely to have

smaller, lower resolution screens and less memory. Access to

power may be limited, so users will need to go longer between

battery charges. Users may also have limited access to data,

as connections may be slow or intermittent. This section

looks at how to code an app to allow for these conditions.

01 Make sure your app is still usable on slow and intermittent data

connections

02 Make your app useful even when it’s offline

03 Help users control the amount and cost of their data use

04 Encourage installs and retention by keeping your APK small

05 Use memory efficiently to accommodate devices with limited

memory

06 Avoid battery draining features so users can go longer between

charges

07 Save data and battery by using images of the right size for a

crisp display

08

09

10

Ensure your app looks good on a variety of screen sizes

Give all your users an app that feels fast and responsive

Reach a wide audience with an app that runs on popular Android

versions

01

Make sure your app is still

usable on slow and intermittent

data connections

Manage how your app uses data so it provides essential information first:

to maintain good functionality and responsive behavior even over an

intermittent 2G network.

Why it works:

Your app’s ability to transfer information in a timely manner is

dependent on the network connection. Detecting the quality of the

network and adjusting the way your app uses it can help your app

provide a great user experience.

How to do it:

Use ConnectivityManager functions isActiveNetworkMetered,

getActiveNetworkInfo,and getNetworkCapabilitiesas

well as TelephonyManager getNetworkTypeand getDataState

to detect the quality and availability of the data network. Also monitor

ConnectivityManager CONNECTIVITY_CHANGE for changes in

network status.

Best practices:

Fetch and display text before images and other rich media.

Listen for changes in the network availability or quality and

adjust downloads accordingly by scaling up or down the number

and size of requests. For example, scale down by downloading

lower resolution media or exclude media from the download

entirely.

When network quality is high, particularly on unmetered

networks, consider prefetching data the user will want, so it can

be available if the network quality drops. But remember, many

phones will have limited memory too.

Optimize images and avoid background services where possible.

Give users control over when and what connection they use,

particularly for large downloads or syncing.

Get started:

Managing Network Usage

02

Make your app useful even

when it’s offline

When operating in an area with limited or no connectivity, ensure your app

is able to offer basic functionality and display its essential content.

Why it works:

In emerging markets network coverage may be patchy and, even when

there is coverage, relatively slow. It’s therefore common for devices to lose

data network connectivity. Building your app so it continues to provide

useful features and content in limited data network or intermittent data

connection environments will ensure users remain engaged.

Best practices:

Tell the user that they have lost connectivity only when it

matters, such as when a message cannot be sent due to lack of

connectivity.

Create an offline-first architecture using GcmNetworkManager

(to schedule synchronization tasks) and ContentProviders

(to manage and access data).

Use a local database (such as SQLite or SharedPreferences) for

long lived data and a bounded disk cache (such as

DiskLruCache) for transitory data.

Use an architecture that separates fetches from the network

from the processes that present the user interface.

Queue outbound updates from the app and send them

automatically as soon as network connectivity is restored.

Cache content or perform updates when network connectivity is

good. Base caching on the user’s likely demand for content or

data in the future.

Data that doesn’t typically change should only be requested once

over the network and cached for future use.

Get started:

Managing Network Usage

03

Help users control the amount

and cost of their data use

Provide users with the ability to control the amount of data your app

downloads, and the networks it uses for different types of upload and

download.

Why it works:

In most emerging markets users will pay for mobile data as they use

it. Public Wi-Fi hotspots will often meter data too. Users who are

comfortable with your app’s data use and associated costs will

become more engaged. It’s important to give users the ability to

control how data is used, particularly to reduce the use of expensive

data connections.

Best practices:

If your app’s data consumption could be significant, provide

users with an onboarding process that covers data use. With this

process, help users find the best balance between data used and

the quality and timeliness of content presented by your app.

Offer users settings to control data syncing, pre-fetching, and

network use behavior. Examples of the controls you might

include are: quality options for streamed audio or video, options

to take lower resolution images or skip them entirely, or defining

content that is fetched over Wi-Fi and cached for later access.

Provide a network preferences screen (by including an Activity

that supports action ACTION_MANAGE_NETWORK_USAGE) as a

way to navigate to the app’s network settings from outside the

app. It’s typically invoked from the settings or data usage

screens, and can be used from within the app too.

Get started:

Managing Network Usage

04

Encourage installs andretention

by keeping your APK

small

Look to reduce the size of your app’s APK file, particularly by reducing

the size of bundled graphics and code. Also minimize its storage

footprint after installation and allow users to move it to a memory

card.

Why it works:

Emerging market users can be reluctant to download apps with large

APKs, because of the impact large APKs have on data use and

storage space on devices. As users may be using phones with limited

storage capacity, apps using too much local storage are likely to be

removed.

Best practices:

Keep your APK size small: under 10 megabytes.

Optimize the graphic resources bundled with your APK. Use

vector images where possible (the Android Support Library

provides the support-vector-drawable and animated-vector

drawable libraries to provide backward compatible support for

vector images). For raster images use WebP format rather than

PNG in APKs. WebP is supported in Android 4.0 and above.

Avoid using large background images.

If you’ve many large images across multiple screen densities,

consider splitting your APK by density. By targeting builds by

specific densities, users with low density devices won’t have to

incur the penalty of unused large images.

Use a tool such as ProGuard to reduce the size of your compiled

code.

Use external libraries with care: ensure that they’ve been

optimized for mobile use.

Enable resource shrinking at build time by setting

minifyEnabled=trueand shrinkResources=truein

build.gradle.

Selectively include Play Services APIs into your APK.

Allow your app to be installed to external storage using the

android:installLocationflag in your AndroidManifest.

Where possible, also ensure that any data your app writes is

stored to external storage.

Get started:

Optimizing your APK

05

Use memory efficiently to

accommodate devices with

limited memory

Look at all the ways in which your app can use memory — such as

user data, caches, and processes — and critically examine their use to

look for ways of reducing your app’s overall memory footprint.

Why it works:

The phones in use in emerging markets may offer users 512MB of

memory or less. Apps that take up a significant portion of this

memory are likely to be uninstalled, as users look to get the most out

of their devices. Minimizing memory use can help improve your

retention rates.

Best practices:

Use ActivityManagermethods such as isLowRamDevice

and getMemoryClassto determine the nature of available

memory at runtime. Use this information to adapt your app to

best use the available memory.

Use the Android Studio memory benchmarking and profiling

tools to measure memory use at runtime.

Benchmark the memory footprint in each version of your app as

this can help catch unintended memory footprint growth.

Use lower resolution images on low memory devices.

Release memory when your user interface becomes hidden.

Release memory as memory becomes tight.

Use the Memory Monitor Tool to find out whether undesirable

garbage collection (GC) event patterns might be causing

performance problems.

Run Heap Viewer to identify object types that get or stay

allocated unexpectedly or unnecessarily.

Use Allocation Tracker to identify inefficient memory use.

Use services sparingly as they consume memory.

Get started:

Managing your app’s memory

06

Avoid battery draining features

so users can go longer between

charges

Avoid processes or features that drain battery, particularly those

background processes that don’t immediately contribute to the user

experience.

Why it works:

Low cost phones tend to use lower capacity batteries and their users

may not have regular access to power sources they can use to

charge their phone. Apps that reduce the time between charges are

likely to be uninstalled, so eliminating processes or features that can

reduce battery life can help improve your retention rates.

Best practices:

Send push messages from your server using Google Cloud

Messaging (GCM) to trigger periodic or event specific activity in

your app. This avoids long running persistent network

connections and is efficient as GCM uses a low power,

persistent connection to delivers messages.

Use GcmNetworkManageror other techniques and batch

network requests to reduce the number of power hungry radio

system activations. With GcmNetworkManageryou can also

schedule background task to start when the device is charging

and connected to an unmetered network.

Don’t ask the device to remain awake using Wakelockand

honor the user’s sleep settings.

Benchmark your app’s battery use with Batterystats, using

Battery Historian to convert the data collected into an HTML

visualization.

Get started:

Optimizing Battery Life

07

Save data and battery by using

images of the right size for a

crisp display

Make sure that images sent to devices match the size at which they’ll

be rendered. Use image compression that balances quality with size.

Why it works:

Oversized images will consume data unnecessarily and take longer to

download than correctly sized images. Once on the device, oversized

images consume memory, processor, and battery as they are scaled

to fit. By sending the right sized image you save your user data traffic

charges and deliver a more responsive UI.

Best practices:

Ensure your app always requests the right sized images from

your server, and that your server provides those images.

Use WebP to deliver images to Android 4.0 and above (lossless

WebP is supported from Android 4.2) in the app’s APK and

online. WebP delivers smaller file sizes than PNG and JPG with

at least the same image quality.

Consider making image size requests based on network type or

network quality. For very poor connections, consider not

downloading images altogether. Use dynamic placeholders such

as pre-computed palette values or low-resolution thumbnails to

improve the user experience while images are being fetched.

Use an image loading library, such as Glide or Picasso, to handle

image fetching and caching. They will also appropriately size

images and offer other features, such as transitions.

Get started:

WebP

08

Ensure your app looks good on

a variety of screen sizes

Make sure your app works well on a variety of screens: offering crisp

graphics and appropriate layouts on low resolution and small

screens.

Why it works:

Many devices in use in emerging markets will have smaller, lower

resolution screens compared to the common screen sizes and

densities. Ensuring your app offers a good UX on smaller screens will

increase your potential audience.

Best practices:

Use density independent pixels (dp) units, not pixel (px) units,

when defining app layouts. This ensures that the physical size of

your user interface will be consistent regardless of device.

Follow the material design guidelines on metrics and keylines to

ensure you have layouts that can scale across screen densities.

Ensure that your app layouts work well on small and medium

screen sizes and be selective about which UI elements are

visible: focus on showing the user the essential information first.

Ensure that your graphics and text work well on low density (ldpi

and mdpi) screens. Provide bitmaps that scale correctly.

Test your graphics on ldpi and mdpi screen densities and layouts

on small and medium screen sizes.

Get started:

Supporting Multiple Screens

Bonus tip:

Devices with lower density or smaller screens tend to have lower

hardware specifications. To maximize the performance of your app

on these devices consider reducing the use of or removing processor

intensive graphics effects, such as animations or transitions.

09

Give all your users an app that

feels fast and responsive

Tune your app’s layout and UI to offer all users a similar perception of

performance and response.

Why it works:

User perception of acceptable app performance doesn’t diminish

simply because they may be using a low cost or pre-owned device. By

optimizing your UI and using appropriate visual cues and UI feedback,

you can provide users with an experience that feels fast and

responsive regardless of their device’s constraints.

Best practices:

During app startup provide a placeholder UI (where your app

presents a temporary user interface quickly) or a branded launch

screen, to reduce the perception of load time compared to a

blank canvas.

Avoid empty states such as lists with no items. Offer a non

interactive image and a text tagline, starter content, nearest

matches, or educational content instead.

Provide responsive interactions on all touchable elements, this

gives users the impression that the app has responded to their

request immediately, even if the underlying process takes a

moment to complete.

Keep visual indicators of progress and activity simple, with

minimal visual changes. Avoid blocking dialogs with progress

indicators: apps that are unresponsive when performing

background activity feel slow and reduce user satisfaction.

Simplify or remove animations on low cost devices to reduce the

demands on the device’s CPU and GPU.

Debug GPU overdraw, where pixels are drawn more than once

per pass, and look to minimize it to deliver a smooth framerate.

Make sure your app matches the screen refresh rate of 60

frames per second and profile your app using on-device tools to

confirm.

Get started:

Keeping Your App Responsive

10

Reach a wide audience with an

app that runs on popular

Android versions

To reach the widest audience in emerging markets consider offering

backward compatibility to Jelly Bean and where practical to Ice

Cream Sandwich.

Why it works:

The age profile of devices in emerging markets will generally be older

and, as a consequence, the versions of Android they are running

include a higher percentage of earlier versions. Therefore, apps that

can run across a broad range of Android versions are likely to work

for a larger audience.

Best practices:

Use the Google Play services APIs to access the best of Google,

largely independent of Android platform version.

Take advantage of Android Support Library packages to add

backward-compatible versions of Android framework APIs to

apps you want to run in devices.

Always target the latest version of Android (by setting

targetSdkVersion). This ensures that your app inherits the

latest runtime behavior.

Use minSdkVersionto set the backwards compatibility level of

the app. Use 16 when offering compatibility to Jelly Bean and 14

to go back to Ice Cream Sandwich. Once done the Android build

tools will report the incorrect use of new APIs that might not be

available in older versions of the platform.

Get started:

Support Library Features

Section 2

Dan ahead for

OCal USers and

anguages

The needs and aspirations of the next billion users will share

common ground with your existing users, but also

encompass unique and novel requirements. Creating an app,

or retargeting an existing app, for these users will require a

deep understanding of local challenges and opportunities.

01 Design for the widest audience by understanding local users

02 To simplify localization have translation in mind when designing

your app

03 Translate your app with the App Translation Service in the

Developer Console

04 Test your app in each language to ensure a successful launch

01

Design for
the

widest
audience by

understanding local users

Research new markets thoroughly to ensure you understand the

social, cultural, educational, and language factors that affect your

potential audience. Also find as much information as you can on the

device mix and network coverage and speed found in the market.

Why it works:

By understanding the unique challenges and opportunities faced by

users in new markets, as well as their preferences and needs, you’ll be

able to better determine what changes your app might need to serve

those users and help formulate a better go to market plan. This will

make you more likely to succeed in entering new markets.

Questions to ask:

What are the levels of numeracy and literacy?

What are the local content trends, preferences, and sensibilities:

what is the right tone and language?

Arethere any device features that are more common or unique

to the market, such as dual and triple SIM phones?

What is the buying power of local users and how does that affect

the prices I can charge for my app, subscriptions, or in-app

products?

Does the market prefer prices that end in .00, .99 or others?

Do any of my existing users know these markets and would they

be willing to offer advice or feedback?

Best practices:

Focus on creating an interface that doesn’t rely on the written

word to be usable.

Use fewer words and minimize non-numerical input.

Provide graphical cues with audio and voice support.

Keep the interaction simple: avoid scrolling menus; use tappable,

browsable interfaces.

Use auto-complete and curated lists, avoid searching and

filtering.

Use material design components to provide users with a familiar

interaction paradigm.

Build features by thinking mobile first. For example, don’t rely on

familiarity with email and web passwords: offer phone number

based user registration.

Dual or triple SIM phones are common, add appropriate call or

messaging features.

Spending power will be weaker than you might be used to, so a

good onboarding flow is vital. Provide app and subscription trials

so the user can try before they buy.

Get started:

Material design

02

To simplify localization have

translation in mind when

designing your app

Make sure that your app is designed to be easily localized by

accommodating the variations you’ll find in different languages: allow

for spacing, density, order, emphasis, and wording variations. Also

make sure that date, time, and similar are internationalized and

display according to the phone’s settings.

Why it works:

Designing your app with the nuances of localization in mind will save

you time and money when you come to expanding into emerging

markets. It’ll also ensure a positive, mistake-free experience for your

users.

Best practices:

Extract UI strings from your app code and keep them in an

external file. Android makes this easy with a resources directory

in each Android project.

Design a single set of flexible layouts. For example, build in 30

percent extra space in UI elements to accommodate other

languages.

Use alternative layouts for localizations with caution, as they

tend to increase maintenance effort — even though Android

makes it easy to declare sets of layouts and other resources for

specific languages, locales, screen sizes, and more.

Support Right to Left layouts and text using full native support

for features such as layout mirroring in Android 4.2 and later.

Use system-provided formats for dates, times, numbers, and

currencies so your app automatically matches the user’s

selection.

Include a full set of default resources, such as layouts,

drawables, and strings. Include them in the default resource

directories without any language or locale qualifiers.

Get started:

Design for localization

Bonus tip:

Consider whether you’ll use a single APK or separate APKs for

different markets. Using a single APK is recommended. However,

multiple APKs could be useful if you’re going to significantly change

your app’s content to meet the needs of local markets. For emerging

markets you might want to create APKs that contain graphics

optimized for small screens or a separate lite version that allows for

poor data access.

03

Translate your app with the App

Translation Service in the

Developer Console

Obtain a quality translation of the text used in your app as well as

your Google Play store listing, making sure that text in images is

translated too. Consider using the Google Play App Translation

Service to access pre-qualified translation resources.

Why it works:

Translating your app and listing text into the native language of any

target market significantly improves the download numbers and user

engagement with your app. And a good quality translation is

important, because a poor translation will often be taken as a sign

that the app itself is of poor quality.

How to do it:

Ensure all your strings are defined in strings.xml,remove any

redundant strings, and add additional information to help with

translation.

In the Developer Console, select the app you want to translate.

Find the app translation service at the bottom of the APK

section.

Select your translator and target languages.

Pay for the service.

Manage the translation directly with your chosen translator.

Best practices:

If selecting a translator yourself, make sure that they have

experience translating apps and games as literal translation of

your app’s text strings might not convey the correct meaning.

This can be a particular issue when translating games, because

the language in games often has subtle but important nuances

that may be obvious only to a gamer.

Remember to include the content of your Play store listing and

text used in images as part of your translation request. When

using the Google Play App Translation Service add these text

strings to the strings.xmlfile sent for translation.

Get started:

Translate UI strings and other resources

Bonus tip:

You can also use the App Translation Service in the Developer

Console to get translations of your in-app product details and

universal app campaign text.

04

Test your app in each language

to ensure a successful launch

Thoroughly test your app with local users prior to general release and

before investing in other activities. In particular, test to ensure your

app is capable of achieving good levels of engagement before

investing in acquisition activities.

Why it works:

Regardless of the quality of your translation service and how well

aligned your app is to your local market research, mistakes and

misunderstandings can happen. Testing your app with the largest

representative set of users you can manage will help you identify and

eliminate issues, issues that could hamper your apps entry into its

target market.

How to do it:

Decide whether you want to run alpha and beta tests, or just beta

tests.

Collect email addresses from your testers (to run a closed test),

create a Google+ community or Google Group and invite testers

to join (to run a closed test) or choose to run an open test (which

you can limit to a specific number of testers to make it

manageable).

Select your app in the Developer Console.

Upload your alpha or beta APK to the relevant tab, choose the

testing method, add a feedback email address, and publish your

APK on Google Play.

Share the opt-in URL with your testers.

Review their feedback, update the app, and iterate until you’re

ready to release your app.

Best practices:

Run tests with local users or native-language speakers.

Look out for clipped text, overlapping text, and poor line

wrapping.

Check for incorrect word breaks or punctuation.

Validate alphabetical sorting to ensure the order is as expected.

Make sure all layouts and text directions are correct.

Watch for untranslated text; check for the resources directory

being marked with an incorrect language qualifier.

Test for default resources.

Get started:

Set up alpha/beta tests

Bonus tip:

Use Cloud Test Lab to test your app on popular, physical Android

devices, across multiple languages, screen orientations, and Android

API versions.

Section 3

GOV and engage

al Genoes nº

new markets

Finding an audience among the next billion users starts with a

compelling Play store listing. After that you’ll need to make

careful and creative use of the tools available to find the right

connection with your specific audience, starting with their

feedback. This section looks at these and the range of

engagement, promotion, and monetization options that can

work well, as well as the analytics tools and reports you’ll use

to measure success.

01 Create a compelling Play Store listing and optimize it with

experiments

02 Gather feedback and iterate on your app with beta tests and

reviews

03 Create an engaging app that keeps users coming back

04 Promote your app, drive installs, and optimize your marketing

05 Mix the right business models and earn more revenue

06 Measure what matters and analyze results to keep improving

your app

01

Create a compelling PlayStore

listing and optimize it with

experiments

Don’t simply translate your app’s Google Play store listing — make it

compelling for local users with the right app icon, description,

screenshots, graphics, and video. Use Store Listing Experiments to

find the best combination of text and images for local users that

maximizes your installs.

Why it works:

Unless users know exactly what they’re looking for — an app by a

specific developer, for example — they tend to make their download

decision based first on the app icon, then other aspects of the store

listing such as the screenshots, description, and video. Using Store

Listing Experiments takes the guesswork out of finding the best Play

Store page content for your app.

Best practices:

Familiarize yourself with the Google Play Policy guidelines &

practices to know what you can and cannot include in your

listing, particularly the policies on spam.

Create a unique app icon that will appeal to local users. Consider

working with a professional graphic designer or use the Android

Asset Studio tools.

Make sure screenshots show off localized versions of the best

and most important features of your app. Use a consistent and

clean status bar across all screenshots.

Give readers a clear impression of your app’s UI by adding at

least one unaltered screenshot for smartphone, 7-inch tablet,

and 10-inch tablet versions. Include portrait and landscape mode

shots too.

Make sure your featured image sums up the unique features of

your app in a way that local users can relate to.

Keep your app’s description crisp and to the point; make sure the

first sentence sums up the key and unique features of the app.

Avoid overuse of keywords, focus on readability and fast

comprehension: grab the user’s attention, and keep it.

Include a variety of words in your app description that represent

the core features of your app, so users can find it when

searching.

Include a short video (under 2 minutes) that explains the user

flow. A simple screen recording can be all you need. Use a voice

over by a native speaker or use suitably translated subtitles.

Remember to localize the text in all your screenshots and videos.

How to do it:

In the Developer Console, click All Applications and select an

app.

On the left menu open Store Listing then Experiments.

Give your experiment a name, set the percentage of readers who

should see the experiment and set up the content variants you

want to test — you can test up to three variants of your page’s

graphics and text, either as a global test of graphics (app icon,

feature graphic, screenshots, and video) or text and graphics for

any localization of your store listing. You can even experiment

with the order of your screenshots.

Start your experiment and keep an eye on the banner to follow

progress.

Once the test has completed, open Results and choose to

update your store listing with the content of the winning

experiment.

Get started:

Create a Great Listing

Bonus tip:

With Google Tag Manager and Google Analytics, you can run A/B

tests on in-app elements without the need to update your app.

02

Gather feedback and iterate on

your app with beta tests and

reviews

Use beta testing as well as ratings and reviews as opportunities to

listen to your users and gather feedback. Use their feedback to

regularly update your app: resolve issues and add new features.

Why it works:

Apps that are updated and improved regularly tend to maintain user

engagement. User feedback is often a valuable source of suggestions

for improvements or details of issues that you might not have found.

Staged rollouts can help you to identify crashes and ANRs before you

roll out an update to your larger user base. Responding to feedback,

particularly app reviews in Google Play, engages your users and

makes them feel valued, helping build loyalty. And don’t ignore

negative reviews or feedback, reply indicating how and when you’ll

address the feedback. Users are more likely to leave a good rating

and share your app as the result of a positive interaction.

How to do it:

To set up alpha or beta tests in the Developer Console click on

All Applications and then select the application you’d like to test.

Upload the alpha or beta version of the app’s APK and publish it

on Google Play. Inform your testers that the app is available on

Google Play and provide them with a feedback channel.

To
read

your
app’s reviews,

in the
Developer Console, click

on All

Applications, then select the application you’d like to view, and

choose Ratings & Reviews. To reply to a review, click Reply to

this review. The user is sent an email when you reply, including

an option to update their review or contact you by email. You can

edit your reply later too if, for example, the user updates their

review or rating.

To use
staged

rollouts in the
Developer

Console
click

on All

Applications and then select the application you’d like to rollout.

Choose the percentage of users you want to receive your app in

the first rollout, then save and publish your updated app. Monitor

crash reports and user feedback, correct any issues and publish

a new version of the app if necessary. Repeat with more users

until you’re happy the app can be released to all your users.

Best practices:

To understand your app’s reviews better, you can apply filters to

see them by rating, written language, app version, and/or device.

You can also export your reviews in bulk to conduct your own

sentiment analysis.

Run an open test when you want to encourage feedback from

the broadest community of readers. Alternatively use closed

testing from an email list where you want to test with minimum

visibility and already have a group of known testers in mind.

Balance between these options by creating a testing community

in Google+ or as a Google Group. Here you can control who’ll be

testing, but also have the opportunity to recruit new testers and

encourage discussion among your testers.

For staged rollouts start with a relatively small percentage of

users, perhaps 10 to 20 percent, for the first rollout and give

them 12 to 24 hours to use the app. If this goes well try a larger

group, perhaps 20 to 40 percent, for 6 to 12 hours. Then try a

final step of 60 to 80 percent for a few hours or go straight to a

full release.

Get started:

Set up alpha/beta tests

Bonus tip:

You can see breakdowns of ratings and reviews by dimensions such

as device, country, Android version, and so on. Analyze your ratings

and reviews to gather valuable feedback about how to improve your

app for different groups of users.

03

Create an engaging app that

keeps users coming back

Make use of the Android and Google features that can support user

engagement with your app.

Why it works:

Use Android and Google features to gain access to tried and tested

tools and technologies that have been proven to enhance user

engagement with apps.

Engagement tools:

Use Android intents to make the features of your app available

when users want to complete specific actions.

Extend your app’s interface with rich notifications. Deliver your

users relevant and timely details from your app when they aren’t

actively using or seeking information from it.

Use targeted topic messaging delivered from Google Cloud

Messaging to communicate with specific segments of your

audience and maintain or refresh their interest in your app.

Set up App Indexing so that users can return to your app when it

appears in their search results.

Allow users to login with Google sign-in, eliminating the need to

enter their details and remember a new password. You can then

give users options to use their Google account features, such as

saving content to Drive or adding an event to their calendar.

Where you already have your own user accounts use Smart Lock

for Passwords to save user credentials and automatically sign-in

users from all the devices they own.

Take advantage of Google Play game services to add features

such as leaderboards, multiplayer, quests, and more to your

games.

Use the Nearby API to add support for novel interactions

between users or enable local multiplayer games.

Get started:

Engage & Retain Users

Bonus tip:

Focus on creating an engaging app before you consider investing in

user acquisition efforts. Use alpha and beta testing, trials, or limited

releases to help assess and refine engagement. With a highly

engaging app you’ll achieve a better return on your investment in

acquisition.

04

Promote your app, drive

installs, and optimize your

marketing

Find the right mix of acquisition tools to grow your local audience.

Why it works:

Finding new users among the next billion will present similar

challenges to finding users in any market. The promotion and

marketing tools from Android and Google are tried and trusted means

of connecting with new users. They allow you to focus on finding the

right mix and messaging, instead of forcing you to code your own

solutions.

Promotion tools:

Create universal app campaigns to reach users from the Google

Search Network, YouTube and Google Display Network.

Set up App Indexing to ensure that your app is surfaced when

users search for information it contains. Once surfaced the user

can install your app directly from their search results.

Consult the User Acquisition page in the Developer Console to

find out how users are finding and installing your app, then use

this information to refine your acquisition strategy.

Offer App Invites so that users can easily share your app with

family, friends, and colleagues.

Nurture a community of users on social networks to spread the

word about your app.

Create an AdWords re-engagement campaign to bring back

users who have your app installed.

Offer an app install banner on your mobile website so users can

install your app directly, without searching for it on the Play

store.

When users discover your app videos on YouTube, bring them to

your Play Store listing with a merchandise card.

Get started:

Get Users

05

Mix the right business models

and earn more revenue

Find the right mix of monetization options from paid apps, ads,

subscriptions, and in-app products.

Best practices:

Consider releasing a free version of your app to reach a wider

audience.

With Google Play In-App Billing, you can offer paid apps, in-app

purchases, or subscriptions.

With subscriptions, users can opt in to weekly, monthly,

quarterly, 6-monthly, annual, and seasonal subscriptions. You

can also offer renewal, free trials, upgrading and downgrading,

and many other choices to your users.

Localize your prices and experiment — a simple exchange rate

conversion may not be appropriate. Also consider preferences

for ending prices in .00, .99, or others.

Provide a good onboarding flow, which demonstrates value to

the user before requiring them to make a purchase.

When planning promotions understand local buying cycles: link

promotional activity with local holidays and events.

Use AdMob to display ads from millions of advertisers in your

app.

Try combining AdMob ads and in-app purchases – this

combination has been found to be a very effective way of

optimizing app revenue.

Get started:

Earn

Bonus tip:

Take advantage of the lowest minimum prices Google Play offers in

different markets to make your price points attractive to local users.

06

Measure what matters and

analyze results to keep

improving your app

Use the tools and reports offered by the Google Play Developer

Console, Google Play game services player analytics, and Google

Analytics to gain insights into your audience. Use these insights to

improve your app and how you promote it.

Why it works:

The analytics reports available from Google Play and Google

Analytics help you understand how people discover your app, how

effective your marketing campaigns are in driving discovery, and how

people navigate through different parts of your app. These reports

help you understand the performance of your acquisition channels so

you can fine tune them to deliver the best return on investment. You

can also dig into how users are interacting within your app to find and

remove roadblocks and optimize conversions.

Reports and insights:

In the Google Play Developer Console use the Reports section to

get details of Installs and uninstalls, upgrades, ratings, crashes,

and “Application Not Responding” (ANR) errors. There are also

Financial reports that show where your app revenue comes

from.

From the Developer Console, you can also access the Google

Play game services statistics, where you’ll find insights on your

players, their engagement with your games, and your financials.

Assess the general health of your app and follow data trends

with the Google Analytics App Overview. It provides a summary

of the most relevant data from all the Mobile App Analytics

reports.

The Google Analytics’ Audience Reporting section has a wealth

of data about your users’ characteristics: what app versions

they’re using, what devices they’re on, where they’re from, and

what they’re interested in. Among these, the Active Users report

highlights how users come back over time.

The Behavior Flow report in Google Analytics shows how users

interact with your app allowing you to: identify roadblocks that

are preventing users from progressing through your app, check

that users are following conversion flows, and more.

Get started:

Analyze

Section 4

ºf

GSO || OGS

Find success on Google Play

developers.android.com/distribute

Get news and tips in your inbox

g.co/play/developernews

Android Developers Blog

android-developers.blogspot.com

+AndroidDevelopers on Google+

google.com/+androiddevelopers

Android Developers on YouTube

youtube.com/androiddevelopers

@AndroidDevon Twitter

twitter.com/androiddev

Google Play Developer Help Center

g.co/play/developerhelpcenter

Google Play is committed to helping app and game developers find

success with the next billion users. If you’ve incorporated any best

practices, based on the learning from this guide, into your app please

let us know at the link below. And, please give us your feedback on

the content of this guide, so we can continue to improve our products

and services to help you grow your app or game business on Google

Play:

goo.gl/pnLuVw

